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Abstract

Species invasion is a significant concern because of its substantial effect on native ecosystems.  
A number of species-specific invasion predictions that correspond to environmental conditions are available, 
but literature predicting global species invasion that corresponds to environmental conditions and human 
activity is scarce. In this study, the potential geographic ranges of 308 alien plant species were predicted 
under current environmental conditions and human activities. Environmental conditions were delineated  
by bioclimatic (mean annual temperature, mean annual precipitation, mean temperature of wettest quarter, 
and precipitation of driest quarter) and topographic variables (annual solar radiation and topographic wetness 
index). Human activity was delineated by the human footprint, which is a raster data layer created from 
nine global data layers that describe human population pressure, land use and infrastructure, and human 
access. The potential distribution of the target species was predicted using the different types of models. By 
searching the correlated literature, we identified and excluded the native geographic range of the studied 
species in the predicted geographic range to obtain the exclusive invasive range. Results demonstrated 
that the invasion hotspots included the southern part of North America, Southern and Western Europe, the 
south coast of Asia, coastal regions of Australia and New Zealand, the coast of West Africa, the Ivory Coast  
of Africa, and the southern part of Brazil. In addition, the land areas of the low- (proper for less than 50 
alien species), moderate- (51-100 aliens), and high-risk regions (more than 100 aliens) are 213.23, 18.15,  
and 2.50 million km2, respectively. All variables (bioclimatic and topographic variables and human footprint) 
were positively correlated with increasing richness of alien species. The highest correlation coefficient was 
obtained for the human footprint.
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Introduction

Invasions by alien species can cause a rapid decline 
of native species [1]. An invasive alien species that 
dominates a native ecosystem and outcompetes native 
species can alter the functions of the ecosystem [2]. 
Therefore, the invasive potential of alien species should 
be predicted. The distribution of invasive species is 
important in invasion studies and is at the core of 
conservation planning [3-7]. Distribution is a consequence 
of environmental condition, and potential distribution is 
used to discover quantitatively the response of invasive 
species to variations in environmental conditions. The 
actual distribution of alien species is difficult to obtain 
because of the expensive and time-consuming process 
involved. Remote sensing technology is beneficial for 
timely investigation of large spatial-scale land surfaces; 
however, the spatial resolution of remotely sensed data 
cannot obtain the actual distribution and monitor the 
dispersal of alien species [4]. The potential distribution 
of alien species can be predicted using invasive species 
distribution models [5]. 

The correlation between alien species occurrence and 
environmental condition is constructed in their native 
(and/or invaded) region and then applied in regions 
without an occurrence record to predict the potential 
distribution of target species. This process is called 
spatial extrapolation of species distribution model and 
is mainly used to delineate spatial dispersal prediction 
of species [6]. Temporal extrapolation is another method 
used in species distribution models. In this method, the 
constructed relationship is applied to different time points 
(past or future) to obtain the potential distribution of alien 
species [6]. This technique is feasible when obtaining 
information regarding the past dispersal history or 
future dispersal potential of alien species. Some studies 
have focused on the use of species-specific prediction to 
determine potential invasion [7-9], but literature on global 
species invasion under current environmental conditions 
is limited.

Understanding the dispersal or invasion procedure 
of alien species is a major challenge, particularly the 
mechanism by which climate delineates the geographic 
distribution of invasive species [10, 11]. The spatial 
extrapolation of species distribution models can reveal 
the underlying mechanism that controls the range shift of 
alien species. The environmental (or non-environmental) 
conditions that affect the distribution of invasive species 
should be collected to bring about spatial extrapolation. 
Environmental conditions can be depicted using 
climatic, topographic, and other variables. However, the 
distribution of invasive species cannot be delineated with 
these “natural” variables alone because human activities 
strongly affect the dispersal of alien species directly and 
indirectly. Direct influence includes the introduction of 
alien species outside their native geographic ranges to 
obtain food, medicine, recreation, and other commercial 
benefits [12]. Indirect influence, such as anthropogenic 
elimination of native species, can promote alien species 

invasion; eliminating native species is advantageous 
for alien species when competition exists [13]. The 
influence of human activities on alien species has been 
studied for different species at different spatial scales 
[9, 13-16]. However, the mechanism by which global 
species invasions respond to human activities is not 
clearly elucidated, particularly when human activities 
and climatic variation are considered. Thus, the global 
geographic trend of alien species should be modeled in 
consideration of human activities and climatic variation.

This study predicted the global potential distribution 
of 308 alien species (Supplementary Table S1) and 
examined the correlation between global geographical 
patterns of alien species distribution and human activities. 
The proposed prediction and relationship analyses are 
important in native ecosystem protection and plant 
conservation. The proposed technique may also elucidate 
the underlying mechanisms that control the response of 
alien species to environmental conditions and human 
activities.

Experimental Procedure

Data

Species occurrence data were collected from the Global 
Invasive Species Database (GISD) [17] managed by the 
Invasive Species Specialist Group under the International 
Union for Conservation of Nature and Data Portal of the 
Global Biodiversity Information Facility [18]. The GISD 
focuses on invasive alien species that negatively affect 
native biodiversity and natural ecosystems. The database 
also covers all taxonomic groups from microorganisms to 
animal and plant species in all ecosystems. The occurrence 
data in the database were collected and provided by more 
than 1,000 invasion biology scientists with expertise on 
all taxonomic groups and environments [1]. The Global 
Biodiversity Information Facility is an international open 
data infrastructure that operates through a network of 
nodes. This database allows free access to species data 
and facilitates biological and environmental research 
correlated with biodiversity. A total of 308 selected species 
(107 herbs, 81 trees, 24 vines, 12 aquatics, 24 grasses, two 
alga, two sedges, one rush, three palms, and four ferns) are 
listed in Supplementary Table S1. Several of these species 
are listed by the International Union for Conservation of 
Nature as 100 of the world’s worst invasive alien species 
[19], and the other 108 species have the most occurrence 
records worldwide, according to the GISD. 

These species were selected because of their 
significant effects on biodiversity and intensive threats 
to different ecosystems. We identified the native and 
invasive ranges of each species after an intensive literature 
search, as demonstrated in Table S1. The native range of 
several species (i.e., Central Asia) cannot be depicted by 
borders among different countries; thus, relatively broader 
geographic ranges should be defined. For example, Central 
Asia mainly includes Kazakhstan, Kyrgyzstan, Tajikistan, 
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Turkmenistan, and Uzbekistan. Twenty-five ranges were 
defined in this study, namely East Africa, Middle Africa, 
North Africa, South Africa, Western Africa, Latin America 
and the Caribbean, Central America, South America, 
North America, Central Asia, Eastern Asia, Southern Asia, 
Southeast Asia, Western Asia, Eastern Europe, Northern 
Europe, Southern Europe, Western Europe, Oceania, 
Tropical Asia, Tropical America, the Indian subcontinent, 
the Middle East, the Mediterranean, and Central Europe. 
The administrative regions of these ranges are presented 
in Table S1.

Climatic variables are the most important factors that 
determine the relationships between species occurrence 
and environmental conditions [1, 7, 10]. This study 
used climatic variables from the Worldclim dataset [20], 
which utilizes 19 bioclimatic variables (interpolated 
using a 0.5° spatial resolution) to characterize the 
existing temperature- and precipitation-related climatic 
conditions. These variables are important in maintaining 
species populations. However, high collinearity exists 
among the 19 variables; consequently, overfitting may 
occur when modeling the potential distribution of the 
target species. Therefore, only a subset of the dataset 
was selected for modeling. We specifically used mean 
annual temperature (MAT), mean annual precipitation 
(MAP), mean temperature of wettest quarter (TWQ), 
and precipitation of driest quarter (PDQ) to characterize 
climatic conditions. We also used topographic wetness 
index (TWI) and annual solar radiation (ASR). These 
two variables were calculated based on the global digital 
elevation model (DEM) according to the method of Beven 
and Kirkby [21]. TWI and ASR were selected because 
several studies have revealed their strong correlation 
with the spatial distribution of plant species [22-25]. 
Moreover, the influence of human activities was included 
in modeling the spatial distribution of plant species. 
Therefore, we used the human footprint (HFP) as an 
index to delineate the characteristics of human activities. 
HFP ranges from “0” (no human activity) to “100” (most 
intensive human activity). Its value is derived from nine 
global data layers that include human population pressure, 
land use and infrastructure, and human access (coastlines 
and roads) [26]. TWI and ASR were originally calculated 
based on DEM with a 30 arc-second resolution, which is 
similar to the resolution for collecting HFP, to maintain a 
similar spatial resolution to that of bioclimatic variables 
(resolution is 0.5°). We resampled the resolution of these 
three variables with the MAJORITY algorithm.

Species Distribution Modeling

The potential distribution of target plant species 
can be modeled by combining the collected occurrence 
records and variables that are assumed to be crucial for 
species invasion. This combined approach is used to 
determine the relationship between species occurrence 
and the considered variables. The application of the 
relationship at a relatively broader spatial scale (or in 
another temporal period) can predict potential species 

distributions. The use of species distribution models, 
which consist of different models based on different 
algorithms, is a feasible method to obtain the potential 
distribution of target species. In this study, nine different 
species distribution models were used within the ModEco 
platform [27]. These models are BioClim [28, 29] (Busby 
1986, Carpenter et al., 1993), DOMAIN [26], generalized 
linear model, artificial neural network, support vector 
machine, classification tree, maximum likelihood, rough 
set, and maximum entropy. The BioClim model identifies 
locations where all environmental variables fall within 
certain percentiles (e.g., 95%) of the observation records. 
Thus, BioClim defines the environmental envelope for 
target species as a hyperbox (Carpenter et al., 1993). 
The DOMAIN model assigns a classification value to an 
unknown site based on the distance of its closest similar 
site in environmental space. This model is analogous to 
the nearest neighbor classification and is considered an 
improvement over the BioClim model [29]. Generalized 
linear model is a generalization of the general linear model 
and is commonly used to model dependent variables that 
are discrete distributions and are nonlinearly related to 
independent variables (via a link function that transforms 
the scale of the dependent variable) [30]. Artificial neural 
networks extract linear combinations of the input variables 
and model the output as a nonlinear function of these 
variables [31]. In the ModEco platform, a four layer feed-
forward artificial neural network (one input, one output, 
and two hidden layers) trained with the backpropagation 
algorithm is implemented [32]. 

Support vector machines are designed for two-class 
problems where both positive and negative objects exist (in 
this study, both the presence and absence of targets species); 
in this situation, the model seeks to find a hyperplane 
in the feature space (environmental variable space) that 
maximally separates the two target classes. Support vector 
machines have several advantageous characteristics for 
modelers [33]. Classification trees seek to partition the 
response variable recursively into increasingly pure binary 
subsets with splits and stop criteria [34]. The maximum 
likelihood method labels an unknown location to the class 
(either presence or absence) of the maximum likelihood. 
The likelihood is defined as the posterior probability of 
the unknown location belonging to either presence or 
absence [34]. The rough set method is a mathematical tool 
that deals with a vague concept based on reduction; this 
model is particularly useful for rule generation and feature 
selection in data mining [35]. The maximum entropy 
model was developed based on the principle of maximum 
entropy, under which a target probability distribution can 
be determined by finding the probability distribution of 
maximum entropy, which is subject to a set of constraints 
that represent incomplete information regarding the target 
distribution [36]. 

BioClim, DOMAIN, and the support vector machine 
use presence-only data when modeling potential 
distribution of target species, whereas a presence-absence 
record is necessary for other models (maximum likelihood 
and generalized linear model). The “pseudo-absence” 
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records were generated from the entire study area because 
of the lack of absence data. The number of pseudo-
absences for each species was generated according to a 
previously published method [1]. The potential distribution 
results predicted by these models included binary (“1” for 
proper and “0” for improper) and probability (“0” for most 
improper to “1” for most proper) formats. Moreover, the 
predictions in the probability formats should be converted 
into binary format. The present study used an approach 
for maximizing the sensitivity and specificity for the 
conversion [37]. After the modeling and conversion 
procedures, nine prediction layers (with binary value) 
were obtained for each of the 308 species.

Model Performance Evaluation

The collected presence records (and/or absence 
records) were divided into calibration and evaluation sets 
to model the potential distribution of the target species. 
We used 75% of the records for calibration and 25% for 
evaluation for each species. Model performance was 
evaluated by calculating true skill statistics (TSS) [38]. 
The value of TSS can be calculated from a prediction error 
matrix, which consists of true positive a (recorded present 
and predicted present), false positive b (recorded absent 
and predicted present), false negative c (recorded present 
and predicted absent), and true negative d (recorded absent 
and predicted absent). The value of TSS can be obtained 
by calculating the value of Se + Sp - 1, where Se is the 
sensitivity and equal to a / (a + b) and Sp is the specificity 
and equal to d / (c + d). TSS ranges from -1 to +1, where 
+1 indicates perfect agreement; values of zero or lower 
indicate inferior performance to the random values [38]. 
TSS considers the commission and omission errors; its 
value is unaffected by the size of the validation set; thus, 
TSS has been widely used to evaluate model performance 
[37].

We obtained nine prediction maps for each species 
by applying the nine models. As previously mentioned, 

these maps are binary, with “1” for predicted presence 
and “0” for absence, to indicate the potential distribution 
of the target species. Thus far we have obtained nine 
binary prediction maps for each species and selected the 
map with the highest TSS value as the final prediction 
for each species. In addition, we obtained 308 prediction 
maps correlated with the potential distribution of all 
alien species. These maps also included the native range 
of the species, which were removed using the methods 
reported in published papers (Supplementary Table S1). 
Subsequently, the predicted invasion-only areas of all 
species were obtained. We added the 308 invasion-only 
maps of all species to achieve the final invasion potential 
of all alien plant species.

Results

The TSS values for 308 modeled species ranged from 
0.66 (when modeling the potential distribution of Cuphea 
ignea) to 0.85 (corresponding to Rubus discolor). More 
than 95% (199) of the models exhibited TSS value higher 
than 0.70, thereby indicating reliability of the correlated 
predictions.

The hotspots for alien plants include the southeast 
United States, Eastern South America, Southwest Europe, 
Central and Southeast Africa, Southeast Asia, Southeast 
Australia, and New Zealand. The blue-shaded regions 
in Fig. 1 (i.e., the northern part of North America, the 
majority of Asia, North Africa, the Indian subcontinent, 
and inland regions of Australia) are relatively improper 
for species distribution and/or invasion. The red-shaded 
regions, including the previously mentioned hotspots as 
well as the east and west coasts of Africa and East Asia, 
are relatively more proper. 

Fig. 2 shows the regions with different risk levels of 
species invasion. As demonstrated in Fig. 2a, the grey-
shaded regions are influenced by less than 50 alien 
species and are classified as low-risk. The yellow-shaded 

Fig. 1. Modeled hotspots for alien plants.
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regions are classified as moderate-risk and projected to 
be influenced by 51 to 100 alien species. The red-shaded 
region can be influenced by more than 100 species and 
are considered as high-risk regions. The land areas of the  
low-, moderate-, and high-risk regions are 213.23, 18.15, 
and 2.50 million km2, respectively.

Table 1 demonstrates the correlation coefficient 
between the considered variables (four bioclimatic 
variables, TWI, ASR, and HFP) and alien species richness. 
Among the four bioclimatic variables, the temperature-
related variables (MAT and TWQ) exhibited higher 
correlation coefficients with the alien species richness 
than the precipitation-related variables (MAP and PDQ). 
The topographic variables (TWI and ASR; 0.42 and 0.39 

correlation coefficients, respectively) were more closely 
related to alien species richness than the bioclimatic 
variables. The highest correlation coefficient was obtained 
for HFP (0.51). All correlation coefficients demonstrated 
in Table 1 were positive. Thus, these variables were 
positively correlated with the richness of alien species. 
That is, higher variable value indicated more abundant 
alien species.

A close relationship between alien species richness 
and HFP is also demonstrated in Fig. 2 (Pearson’s  
r = 0.56, p<0.01). The yellow- and red-dashed regions 
in Fig. 2a (regions with more than 50 species invasions) 
closely matched the yellow-dashed regions in Fig. 2b 
(regions with HFP higher than 25).

Fig. 2. Regions with different risk levels of species richness and human activities (HFP). Regions with high species richness are closely 
related to those with high levels of human activities.

Predictors MAT MAP TWQ PDQ TWI ASR HFP

Correlation coefficient with alien species abundance 0.36 0.21 0.37 0.29 0.42 0.39 0.51

MAT: mean annual temperature, MAP: mean annual precipitation; TWQ: temperature of the warmest quarter, PDQ: precipitation 
of the driest quarter, TWI: topographic wetness index, ASR: annual solar radiation, HFP: human footprint.

Table 1. Correlation coefficients between the variables and alien species abundance (p < 0.01).
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Discussion

Invasive alien species extend in different geographic 
regions depending on their invasiveness and environmental 
condition. Therefore, the potential area of distribution 
for each species may differ. In order to compare the 
invasiveness of plant species and other invasive species, 
we also predicted the potential distributions other species 
that has been listed in 100 World’s Worst Invasive Alien 
Species [19] but were not included in this study (as 
presents in Table S1). We further calculated the potential 
invasive area for all the target species and found that this 
area ranges from 0.035 million km2 to 37.47 million km2, 
with an average of 4.73 million km2. To our knowledge, 
this report is the first of similar studies that estimate the 
potential distribution area of invasive species on a global 
scale. We present 10 species with the maximum potential 
distribution area and 10 species with the minimum area 
(Table 2). Rattus rattus, as one of the top 100 most invasive 
alien species worldwide, had the maximum potential 
distribution area of 37.47 million km2, as expected. 
R. rattus originated in tropical Asia and spread through 
the Near East in Roman times before reaching Europe by 
the first century and spreading with European colonization 
across the world. As demonstrated in Table 2, the potential 
distribution area of all 10 species exceeds 28 million km2, 
and the average area is 31.49 million km2. Among the 
10 species, R. rattus is the only animal species whereas 
the rest are plant species, thereby demonstrating the great 
invasive potential of plant alien species. Among the 10 
species with the minimum potential distribution area, 
Dioscorea oppositifolia and Chenopodium hybridum are 
plant species, Carijoa riisei is a coral species, and the rest 
are animal species. The average potential distribution area 
of these 10 species is 0.30 million km2.

Given that invasive species management practices 
(including their use and eradication, etc.) are implemented 
and applied by different countries or regions, the invasive 

species “richness” corresponding to each country or 
administrative region is actually useful [39]. In the present 
study, we determined the potential richness and identified 
10 countries or administrative regions with maximum 
invasive species richness (Table 3). As influenced by 
environmental conditions and human activities, the 
Reunion, New Caledonia, South Africa, the United 
Kingdom, the United States of America, Uruguay, Portugal, 
Argentina, Australia, and New Zealand could be invaded 
by at least 100 alien species. Comparatively, Svalbard, 

10 invasive species with largest potential distribution area 10 invasive species with least potential distribution area

Species name Potential distribution area 
(M km2) Species name Potential distribution area (M 

km2)

Rattus rattus 37.47 Eleutherodactylus coqui 0.035

Ricinus communis 36.12 Polistes chinensis antennalis 0.035

Alternanthera sessilis 34.42 Mustela furo 0.038

Cyperus rotundus 32.74 Mustela nivalis 0.04

Acacia farnesiana 31.94 Dioscorea oppositifolia 0.14

Chromolaena odorata 28.82 Myrmica rubra 0.23

Cynodon dactylon 28.56 Chenopodium hybridum 0.26

Phragmites australis 28.37 Calliphora vicina 0.58

Hibiscus trionum 28.35 Lymantria dispar 0.69

Lantana camara 28.07 Carijoa riisei 0.94

Table 2. Top 10 invasive species with the largest potential distribution area and those with the least potential area.

10 countries (or region) 
with maximum invasive 

species richness

10 countries (or region) 
with minimum invasive 

species richness
Countries 
(or region) Richness Countries 

(or region) Richness

New Zealand 141 Svalbard 0

Australia 130 Mongolia 4

Argentina 119 Niger 6

Portugal 117 United Arab 
Emirates 6

Uruguay 114 Kuwait 7

United States 
of America 113 Qatar 8

United 
Kingdom 112 Gambia 11

South Africa 109 Western 
Sahara 13

New 
Caledonia 107 Chad 14

Reunion 100 Cape Verde 17

Table 3. 10 countries or regions with maximum invasive species 
richness and 10 countries or regions with minimum richness.
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Mongolia, Niger, the United Arab Emirates, Kuwait, 
Qatar, Gambia, Western Sahara, Chad, and Cape Verde 
are 10 countries or administrative regions with minimum 
invasive species richness (less than 20). The potential 
distribution was predicted based on presence samples, 
although the documented presence of samples per country 
is probably underestimated [40]. Thus, we speculated that 
the potential distribution is also underestimated, and the 
actual invasive species richness might be higher than the 
above-mentioned results.

Given that the exploration of species invasion in 
global ecoregions is important and urgently needed [41] 
(Thuiller 2005), we delineated the potential invasive 
species richness for different ecoregions worldwide  
(Fig. 3). Ecoregions at arid or cold regions (such as 
Alaska-Yukon Arctic) have relatively lower invasive 
species richness compared with the ecoregions with humid 
and warm climates (such as northern island temperate 
forests). The global spatial pattern of species richness in 
Fig. 3 agrees with previous works [1, 42, 43]. Based on 

this reliable prediction, we delineated 10 ecoregions with 
maximum invasive species richness. The 10 ecoregions 
include northern island temperate forests, east Australian 
temperate forests, humid pampas, Cantabrian mixed 
forests, southeast Australian temperate forests, Uruguayan 
savana, Atlantic mixed forests, Celtic broadleaf forests, 
Cantebury-Otago Tussock grasslands, and New Caledonia 
rainforests (Table 4). The average invasive species richness 
is 118. Among the 10 ecoregions with the maximum 
invasive species richness, seven are forest ecoregions, 
thereby confirming the previously reported high pressure 
of invasive species in global forest ecoregions [44]. By 
contrast, the Alaska-Yukon Arctic, Taiga Gordillera, 
southern Arctic, northern Arctic, western taiga shield, 
Arctic Cordillera, Yamal-Gydan Tundra, Taimyr-Central 
SiberianTundra, Novosibirsk islands Arctic desert, and the 
Daurian Forest Steppe are 10 ecoregions with minimum 
invasive species richness (richness equals 0), as shown in 
Table 4, thereby demonstrating the low invasion risk in 
these terrestrial ecoregions. However, marine ecoregions 

Table 4. 10 ecoregions with maximum invasive species richness and 10 ecoregions with minimum richness.

Fig. 3. Potential invasive species richness for different ecoregions.

10 ecoregions with maximum invasive species richness 10 ecoregions with minimum invasive species richness

Ecoregions Richness Ecoregions Richness

North Island temperate forests 141 Alaska-Yukon Arctic 0

East Australian temperate forests 130 Taiga Cordillera 0

Humid Pampas 119 Southern Arctic 0

Cantabrian mixed forests 117 Northern Arctic 0

Southeast Australian temperate forests 115 Western Taiga Shield 0

Uruguayan Savana 114 Arctic Cordillera 0

Atlantic mixed forests 113 Yamal-Gydan Tundra 0

Celtic broadleaf forests 112 Taimyr-Central Siberian Tundra 0

Cantebury-Otago Tussock grasslands 110 Novosibirsk Islands Arctic desert 0

New Caledonia rain forests 107 Daurian Forest Steppe 0
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at high latitudes have been invaded according to the 
corresponding research [45].

Selecting variables is a key issue in predicting the 
potential distribution of species (and/or alien species). In 
general, the selection of candidate variables significantly 
depends on data availability [22, 46]. Bioclimatic variables 
(i.e., the Worldclim represents annual trends and the 
extremes of temperature and precipitation) were selected 
in the present study. However, the existing collinearity 
among these variables (which are actually interpolated 
based on DEM), including excessive bioclimatic 
variables, may result in overfitting (excessive restriction 
from bioclimatic variables, causing narrow geographic 
range) of the species distribution models. Thus, a suitable 
strategy (i.e., computing the correlation coefficient 
among variables and excluding these values with high 
correlations) is needed in the selection of candidate 
bioclimatic variables. The use of the selected bioclimatic 
variables is insufficient to delineate the external conditions 
of the species. Indirect variables (such as TWI and ASR) 
that are related to causal mechanisms behind species 
distribution are also important; the indirect variables may 
occasionally be even more important than bioclimatic 
variables, as shown in Table 1. The elucidation of causal 
mechanisms and the inclusion of indirect environmental 
variables are important to model the potential distribution 
of alien invasive species.

As demonstrated in Table 1, human activities have 
significantly affected the dispersion of alien plant species. 
Moreover, the relatively high geographic similarity 
between the spatial patterns of the human influence index 
and the species richness presented in Fig. 2 have confirmed 
this effect. The intended or unintended introduction of 
alien plant species to new areas primarily has resulted in 
the high correlation. Previous studies demonstrated that 
international trading, such as merchandise imports, is 
the most important explanatory variable that determines 
the richness of several invasive alien species [47, 48]. 
Therefore, we suggest that the different types of variables 
correlated with human activities should be included 
when modeling the potential distribution of alien plant 
species. This inclusion is important when predicting 
the distribution corresponding to current environmental 
conditions because the current spatial pattern of human 
activities can be obtained, as shown in this study. 

The interactions between native and alien species 
and those among alien species, as well as other biotic 
factors, were not considered in the present study. The 
function of biotic interactions, such as predation and 
competition, should be elucidated when the actual 
distribution (realized niche) is modeled and mapped [49]. 
A possible comparative approach is the identification of 
biotic relationships and inclusion of biotic interactions to 
model species distribution [50]. Nonetheless, challenges 
are observed when establishing models of potential alien 
species distribution that originate from different regions 
with varied climates, particularly when the target species 
exhibits biotic interactions [51, 52].

After variable selection, a subsequent issue is the 
selection of species distribution models. In addition to 
the models used in the present study, candidate models 
also include the generalized additive model, boosted 
regression tree, genetic algorithm for rule-set prediction, 
and multivariate adaptive regression splines, among 
others. These models can be classified into two categories, 
namely the models based on presence-absence data (PA 
model) and the models with presence-only data (PO 
model). The basic criterion for selecting a candidate 
model is the collected data; the PO model can be used for 
prediction when presence data are collected, whereas the 
PA model is suitable when reliable absence data are also 
collected [53]. Acceptable results can be obtained from the 
prediction provided by one of these models, but a more 
confident potential distribution can only be predicted with 
the ensemble approach [54].

The adaptive evolution of a species is another source 
of uncertainty. Species distribution models assume that the 
relationship between species richness and environmental 
characteristics is stable within the timescale of the 
projection [48]. This assumption is challenging when 
we consider species that undergo microevolution 
(genetic variation) to adapt to climate change. The traits 
that determine the ecological niche of a species are 
universal between and within populations; thus, species 
can adapt to new climatic conditions [55-58]. However, 
macroevolutionary evidence shows rapid shifts in climatic 
niches [8]. Researchers have proposed that the influence 
of evolution on species distribution should be established 
because of its potential effect on the spatial distributions 
of species [55]. Species also exhibit dispersal ability that 
enables them to track proper environmental conditions 
and cope with various pressures, such as climate change, 
by migrating at a sufficient rate. Although climate 
change sufficiently presents a large spatial and/or long 
temporal scale pattern of species migration, the ability of 
a species to migrate rapidly across large distances is also 
possible [1]. Therefore, the correlated prediction under 
the existing climatic conditions is reasonable. Under this 
condition, the potential distribution is modeled with the 
present records (presence and absence), which are the real 
responses of a species to the climatic and other influencing 
variables. However, current records are useless when 
modeling future potential distributions because species 
rapidly respond to environmental changes. Consequently, 
modeling the potential distribution of a species under 
future climatic conditions may pose significant challenges 
when the geographic responses of species to changing 
climate conditions are not considered [6].

The potential distribution of alien species has been 
discussed in numerous studies. Some of these studies 
focused on the response of the geographic distribution 
of alien species to climate changes. We believe that the 
previous results are misleading because of the following 
reasons. First, the interactions among species are still not 
completely understood, and how these interactions will 
respond to climate change remains ambiguous. Second, 
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scenarios that consider human activity are difficult to 
obtain. This study demonstrated that human activity may 
contribute to a higher extent than the bioclimatic and 
topographic layers.
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